Relation of Generalized Two Dimensional Fractional Cosine Transform with Other Transform
نویسندگان
چکیده
منابع مشابه
Two-dimensional affine generalized fractional Fourier transform
As the one-dimensional (1-D) Fourier transform can be extended into the 1-D fractional Fourier transform (FRFT), we can also generalize the two-dimensional (2-D) Fourier transform. Sahin et al. have generalized the 2-D Fourier transform into the 2-D separable FRFT (which replaces each variable 1-D Fourier transform by the 1-D FRFT, respectively) and 2D separable canonical transform (further rep...
متن کاملPruning the Two-Dimensional Fast Cosine Transform
Two pruning algorithms for the Vector-Radix Fast Cosine Transform are presented. Both are based on an in-place approach of the direct two-dimensional fast cosine transform (2D FCT). The first pruning algorithm concerns the computation of N0xN0 out of NxN DCT points, where both N0 and N are powers of 2. The second pruning algorithm is more general and concerns a recursive approach for the comput...
متن کاملDigital image Watermarking using Two Dimensional Discrete Wavelet Transform, Discrete Cosine Transform and Fast Fourier Transform
Abstract—In digital watermarking, a watermark is embedded into a cover text in such a way that the resulting watermarked signal is robust to certain distortion caused by either standard data processing in a friendly environment or malicious attacks in an unfriendly environment. This paper presents a digital image watermarking based on two dimensional discrete cosines transform (DCT2), two dimen...
متن کاملNonseparable two-dimensional fractional fourier transform.
Previous generalizations of the fractional Fourier transform to two dimensions assumed separable kernels. We present a nonseparable definition for the two-dimensional fractional Fourier transform that includes the separable definition as a special case. Its digital and optical implementations are presented. The usefulness of the nonseparable transform is justified with an image-restoration exam...
متن کاملTwo dimensional discrete fractional Fourier transform
Fractional Fourier transform (FRFT) performs a rotation of signals in the time—frequency plane, and it has many theories and applications in time-varying signal analysis. Because of the importance of fractional Fourier transform, the implementation of discrete fractional Fourier transform will be an important issue. Recently, a discrete fractional Fourier transform (DFRFT) with discrete Hermite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Innovative Research in Science, Engineering and Technology
سال: 2015
ISSN: 2347-6710,2319-8753
DOI: 10.15680/ijirset.2015.0412015